ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yuh-Ming Ferng, Bau-Shei Pei, Tuan-Ji Ding
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 398-411
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35088
Articles are hosted by Taylor and Francis Online.
During the past years, a number of reduced-scale test facilities have been constructed to investigate the physical phenomena of transients or accidents occurring in nuclear power plants. Since the behavior of a nuclear power plant is complicated, it is quite impossible for a small-scaled facility to simulate all the physical phenomena during the transient process. But, by way of proper scaling, most of the important aspects of transient behavior can be simulated. Calculations using RELAP5/MOD3 investigate whether most of the key thermal-hydraulic phenomena observed in the Institute of Nuclear Energy Research Integral System Test (IIST) facility can be expected in a prototype plant. When compared with experimental data, the calculated results of two different scale models show reasonable agreement with the natural circulation transients. The scale-up capability of RELAP5/MOD3 is demonstrated by simulating the single-phase and two-phase natural circulation transients. Also, the scaling distortions in the heat transfer areas of the IIST facility do not strongly distort the thermal-hydraulic behavior of experimental data.