ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hungyuan B. Liu
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 314-326
Technical Paper | Fission Reactor | doi.org/10.13182/NT95-A35080
Articles are hosted by Taylor and Francis Online.
A design for a slab reactor to produce an epithermal neutron beam and a thermal neutron beam for use in neutron capture therapy (NCT) is described. A thin reactor with two large-area faces, a “slab” reactor, was planned using eighty-six 20% enriched TRIGA fuel elements (General Atomics, San Diego, California) and four B4C control rods. Two neutron beams were designed: an epithermal neutron beam from one face and a thermal neutron beam from the other. The planned facility, based on this slab-reactor core with a maximum operating power of 300 kW, will provide an epithermal neutron beam of 1.8 × 109 nepi/cm2·s intensity with low contamination by fast neutrons (2.6 × 10−13Gy· cm2/nepi) and gamma rays (<1.0 × 10−13 Gy·cm2/nepi) and a thermal neutron beam of 9.0 × 109 nth/cm2·s intensity with low fast-neutron dose (1.0 × 10−13 Gy·cm2/nth) and gamma dose (<1.0 × 10−13 Gy·cm2/nth). Both neutron beams will be forward directed. Each beam can be turned on and off independently through its individual shutter. A complete NCT treatment using the designed epithermal or thermal neutron beam would take 30 or 20 min, respectively, under the condition of assuming 10 µg 10B/g in the blood. Such exposure times should be sufficiently short to maintain near-optimal target (e.g., 10B, 157Gd, and 235U) distribution in tumor versus normal tissues throughout the irradiation. With a low operating power of 300 kW, the heat generated in the core can be removed by natural convection through a pool of light water. The proposed design in this study could be constructed for a dedicated clinical NCT facility that would operate very safely.