ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Hiroshi Sekimoto, Zaki Su’ud
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 307-313
Technical Paper | Fission Reactor | doi.org/10.13182/NT109-307
Articles are hosted by Taylor and Francis Online.
A conceptual design study of small long-life nuclear power reactors used for a remote or isolated area has been performed. Lead as well as lead-bismuth is employed as the coolant, and both metallic and nitride fuels are investigated. There are some severe requirements on these reactors for operability, maintainability, safety, and proliferation resistance. Some important characteristics of the proposed designs [150 MW(thermal)] are the following: transportability between reactor factory and operation site; capability of long-life operation (12 yr) without refueling or fuel shuffling while maintaining burnup reactivity swing less than 0.1% Δk; negative total core coolant void coefficient of reactivity over all the burnup period; omission of intermediate heat exchanger; and a relatively large contribution of natural circulation.