ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Yasushi Nomura, Hiroshi Okuno
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 142-152
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT95-A35074
Articles are hosted by Taylor and Francis Online.
For handling of nuclear fuel during reprocessing or for design of spent-fuel storage and transportation, one needs to know the scale of maximum credible criticality accidents, i.e., the total fission number so as to know the radiological exposure of working personnel as well as the risk to the public in the event of an accident. Some simplified evaluation models for conservatively predicting the number of total fissions during an accident are derived theoretically using the one-point adiabatic reactivity balance model for the homogeneous and heterogeneous systems, respectively, which are frequently seen in nuclear fuel facilities. These simplified evaluation models are subsequently validated with the transient experiment data and actual accident data published to date from the world nuclear community. Some conventionally used simplified evaluation models of this kind are quoted and compared with the results to show the convenience of the current models, having almost no restrictions in the application for any kind of nuclear fuel, material composition, geometry, and dimension, and thus, ensuring adequate margins for predicting the total fission number at the time of a critsssicality accident.