ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. D. Harvel, J. S. Chang, V. Santhana Krishnan
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 132-141
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35073
Articles are hosted by Taylor and Francis Online.
Radiographic images generated by the real-time neutron radiography system (RTNR) are analyzed by customized image processing software for the determination of instantaneous void fraction distribution. The cross-sectional averaged axial void fraction profiles and the two-dimensional void fraction profiles are determined simultaneously for each image. Various flow regimes are generated to determine if the RTNR system can accurately predict the void distribution in the radial, axial, and temporal coordinates. The results show the RTNR system correctly determines the void fraction distribution for each flow regime; however, accuracy decreases with decreasing void fraction. For net water thicknesses >1.0 cm, the accuracy decreases with increasing water thickness due to the extreme sensitivity of thermal neutron interactions with light water. Heavy water is a more suitable fluid than light water for void fraction measurements in large-diameter flow systems.