ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Motoo Fumizawa, Makoto Hishida
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 123-131
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35072
Articles are hosted by Taylor and Francis Online.
Air ingress by buoyancy-driven exchange flow occurs during a standpipe rupture accident in a high-temperature engineering test reactor (HTTR). The exchange flow of helium and air through annular and Round tubes is investigated. The method of mass increment is applied to measure the exchange flow rate. A test cylinder with a small tube on the top is used for the experiment. The following results were obtained: The exchange velocity is largest for the short vertical round tube as compared with the orifice and long tube. In the annular tube, the exchange-velocity or the volumetric exchange flow rate decreases with the equivalent diameter of the annular passage under 6 mm. The annular tube is effective to reduce the air ingress flow rate from the broken standpipe of the HTTR. In the inclined round tube, the inclination angle for the maximum densimetric Froude number decreases with the increase of the length-to-diameter ratio of the tube for the helium-air system. On the other hand, this angle remains almost constant for the water-brine system. Flow visualization results indicate that the exchange flows through the inclined round tubes take place smoothly and stably in the separated passage of the tube. The flow pattern in the vertical annular tube seems to be similar to that in the inclined round tube.