ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Nicholas J. Morley, Mohamed S. El-Genk
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 87-107
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35070
Articles are hosted by Taylor and Francis Online.
Neutronics and thermal-hydraulics design and analyses of the pellet bed reactor for nuclear thermal propulsion are performed based on consideration of reactor criticality, passive decay heat removal, maximum fuel temperature, and subcriticality during a water flooding accident. Besides calculating the dimensions of the reactor core to satisfy the excess reactivity requirement at the beginning-of-mission of 1.25 $ (keff of 1.01), the TWODANT discrete ordinates code is used to estimate the radial and axial fission power density profiles in the core. These power profiles are used in the nuclear propulsion thermal-hydraulic analysis model (NUTHAM-S) to determine the two-dimensional steady-state temperature, pressure, and flow fields in the core and optimize the orificing in the hot frit to avoid hot spots in the core at full-power operation.