ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Michael J. Zavisca, J. Michael Doster
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 76-86
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35069
Articles are hosted by Taylor and Francis Online.
Finite difference schemes currently applied to the modeling of two-phase flows in flow networks exhibit difficulties in properly simulating certain spatial and temporal discontinuities. These discontinuities include points along the one-dimensional flow axis where density and other thermophysical properties become discontinuous or experience rapid state domain changes. A methodology for treating spatial and temporal discontinuities is presented. This methodology consists of three main features: (a) subnode time-averaged do-noring of thermodynamic properties, (b) a variable pressure-at-discontinuity staggered mesh discretization, and (c) a variable point state equation linearization. The proposed scheme is similar in form to standard semi-implicit, staggered mesh discretizations, requires little extra overhead, and results in substantially improved accuracy and code execution times. Comparisons are made with standard time and spatial discretizations, as well as with two simpler alternate methods for recognizing and tracking discontinuities. The first of these attempts is to adjust the time-step size such that the fluid discontinuity arrives at a node boundary, or a change in fluid state occurs precisely at the end of a time advancement. The second attempts to redistribute mass and energy to correct for improperly donored values when a discontinuity crosses a node boundary during a time step. Neither of these alternatives proved adequate.