ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Aamir Husain, Calvin E. Breckenridge, David Storey
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 265-274
Technical Paper | Reactor Operation | doi.org/10.13182/NT95-A35059
Articles are hosted by Taylor and Francis Online.
An in situ pipe gamma spectrometry technique was applied to determine the activity within piping during various stages of CANDU reactor decontaminations. Measurements were performed in general radiation fields up to ∼500 mR/h and required both the detector and the pipe being scanned to be appropriately shielded from other neighboring piping. Measured counts were interpreted using a pipe source efficiency calibration with due regard to its distance dependence. Cobalt-60 was the dominant radionuclide on the piping before the decontamination. Deposition of I24Sb occurred on out-core piping surfaces during the decontamination. The spectrometry measurements were supplemented with contact radiation field measurements, which were performed using survey detectors housed within specially designed pipe shields. Radiation fields estimated from measured radionuclide activities were compared with the measured radiation fields. On average, the ratio of measured to estimated fields was ∼72%. Reasons for this discrepancy are discussed.