ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Motoo Fumizawa
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 236-245
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35056
Articles are hosted by Taylor and Francis Online.
An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vertical pipe concerning the air ingress process during a standpipe rupture in a high-temperature gas-cooled reactor. In the current study, the evaluation method of exchange flow was developed by measuring the velocity in the pipe using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. The Rayleigh numbers range from 2.0 × 104 to 2.1 × 105. The exchange flow fluctuated irregularly with time and space in the pipe. It was found that the exchange-velocity distribution along the horizontal axis changed from one- to two-humped curves with increasing Rayleigh number. In the case that the lower plenum wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the lower plenum wall and heated disk were kept at the same temperature.