ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Motoo Fumizawa
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 236-245
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35056
Articles are hosted by Taylor and Francis Online.
An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vertical pipe concerning the air ingress process during a standpipe rupture in a high-temperature gas-cooled reactor. In the current study, the evaluation method of exchange flow was developed by measuring the velocity in the pipe using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. The Rayleigh numbers range from 2.0 × 104 to 2.1 × 105. The exchange flow fluctuated irregularly with time and space in the pipe. It was found that the exchange-velocity distribution along the horizontal axis changed from one- to two-humped curves with increasing Rayleigh number. In the case that the lower plenum wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the lower plenum wall and heated disk were kept at the same temperature.