ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ping-Hue Huang, Jing-Tong Yang, Jen-Ying Wu
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 137-150
Technical Note | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35049
Articles are hosted by Taylor and Francis Online.
Qualification efforts have been performed by the Taiwan Power Company (TPC) and the Institute of Nuclear Energy Research (INER) for the three-dimensional spatial kinetics code ARROTTA for light water reactor (LWR) core transient analysis. Together TPC and INER started a 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, the ARROTTA code was chosen to perform multidimensional kinetics calculations such as rod ejection for pressurized water reactors and rod drop for boiling water reactors (BWR). To qualify ARROTTA for evaluation of the Final Safety Analysis Report licensing basis core transients, ARROTTA has been benchmarked for the static core analysis against plant measured data and SIMULATE-3 predictions, and for the kinetic analysis against available benchmark problems. The static calculations compared include critical boron concentration, core power distribution, and control rod worth. The results indicate that ARROTTA predictions match very well with plant measured data and SIMULATE-3 predictions. The kinetic benchmark problems validated include the Nuclear Energy Agency Committee on Reactor Physics rod ejection problem, the three-dimensional Langenbuch-Maurer- Werner LWR rod withdrawal/insertion problem, and the three-dimensional linear regression analysis BWR transient benchmark problem. The results indicate that ARROTTA’s accuracy and stability are excellent as compared with other space-time kinetics codes. It is therefore concluded that ARROTTA provides accurate predictions for multidimensional core transients for LWRs.