ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ping-Hue Huang, Jing-Tong Yang, Jen-Ying Wu
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 137-150
Technical Note | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35049
Articles are hosted by Taylor and Francis Online.
Qualification efforts have been performed by the Taiwan Power Company (TPC) and the Institute of Nuclear Energy Research (INER) for the three-dimensional spatial kinetics code ARROTTA for light water reactor (LWR) core transient analysis. Together TPC and INER started a 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, the ARROTTA code was chosen to perform multidimensional kinetics calculations such as rod ejection for pressurized water reactors and rod drop for boiling water reactors (BWR). To qualify ARROTTA for evaluation of the Final Safety Analysis Report licensing basis core transients, ARROTTA has been benchmarked for the static core analysis against plant measured data and SIMULATE-3 predictions, and for the kinetic analysis against available benchmark problems. The static calculations compared include critical boron concentration, core power distribution, and control rod worth. The results indicate that ARROTTA predictions match very well with plant measured data and SIMULATE-3 predictions. The kinetic benchmark problems validated include the Nuclear Energy Agency Committee on Reactor Physics rod ejection problem, the three-dimensional Langenbuch-Maurer- Werner LWR rod withdrawal/insertion problem, and the three-dimensional linear regression analysis BWR transient benchmark problem. The results indicate that ARROTTA’s accuracy and stability are excellent as compared with other space-time kinetics codes. It is therefore concluded that ARROTTA provides accurate predictions for multidimensional core transients for LWRs.