ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Tzou-Shin Ueng, William J. O’Connell
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 80-89
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35044
Articles are hosted by Taylor and Francis Online.
For a nuclear waste package emplacement in a potential repository in partially saturated rock, a rock rubble or backfill zone may act more as a barrier than as a pathway for diffusive release of radionuclides. We approximate the diffusive transport process using one-dimensional, one-and two-barrier geometries. The one-barrier model suffices when the effective diffusion coefficient in the first zone, the rubble, is substantially lower than that in the second zone, the host rock. For more generality, such as two zones of comparable diffusivities, or for an additional barrier zone, we model two barrier zones both of finite extent. We present solutions for three types of radionuclide mobilization at the source: a pulse transient input, a steady input rate, and a constant concentration. The algebraic series form of the solutions aids analysis of sensitivity of breakthrough times and peak release rates. For the one-zone case, dimensionless parameters allow plotting of the family of transient solutions on a single graph. Comparisons between results of one- and two-zone models and with published results for different geometries and solution methods support verification of the solutions in this study.