ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tzou-Shin Ueng, William J. O’Connell
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 80-89
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35044
Articles are hosted by Taylor and Francis Online.
For a nuclear waste package emplacement in a potential repository in partially saturated rock, a rock rubble or backfill zone may act more as a barrier than as a pathway for diffusive release of radionuclides. We approximate the diffusive transport process using one-dimensional, one-and two-barrier geometries. The one-barrier model suffices when the effective diffusion coefficient in the first zone, the rubble, is substantially lower than that in the second zone, the host rock. For more generality, such as two zones of comparable diffusivities, or for an additional barrier zone, we model two barrier zones both of finite extent. We present solutions for three types of radionuclide mobilization at the source: a pulse transient input, a steady input rate, and a constant concentration. The algebraic series form of the solutions aids analysis of sensitivity of breakthrough times and peak release rates. For the one-zone case, dimensionless parameters allow plotting of the family of transient solutions on a single graph. Comparisons between results of one- and two-zone models and with published results for different geometries and solution methods support verification of the solutions in this study.