ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Takehiko Nakamura, Makio Yoshinaga, Makoto Sobajima, Kiyomi Ishijima, Toshio Fujishiro
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 45-60
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A35042
Articles are hosted by Taylor and Francis Online.
Irradiated boiling water reactor (BWR) fuel behavior under reactivity-initiated accident (RIA) conditions was investigated in the Nuclear Safety Research Reactor (NSRR) of the Japan Atomic Energy Research Institute. Short test fuel rods, refabricated from a commercial 7 × 7 type BWR fuel rod at a burnup of 26 G Wd/tonne U, were pulse irradiated in the NSRR under simulated cold startup RIA conditions of the BWRs. Thermal energy from 230 J/g fuel (55 cal/g fuel) to 410 J/g fuel (98 cal/g fuel) was promptly subjected to the test fuel rods by pulse irradiation within ∼10 ms. The peak fuel enthalpies are believed to be the same as the prompt energy depositions. The test fuel rods demonstrated characteristic behavior of the irradiated fuel rods under the accident conditions, such as enhanced pellet cladding mechanical interaction (PCMI) and fission gas release. However, all the fuel rods survived the accident conditions with considerable margins. Simulations by the FRAP-T6 code and fresh fuel rod tests under the same RIA conditions highlighted the burnup effects on the accident fuel performance. The tests and the simulation suggested that the BWR fuel would possibly fail by a cladding burst due to fission gas release during the cladding temperature escalation rather than the PCMI under the cold startup RIA conditions of a severe power burst.