ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jean-Pierre Leveque, Bernard Andre, Gérard Ducros, Gilles Le Marois, Gilbert Lhiaubet
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 33-44
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35041
Articles are hosted by Taylor and Francis Online.
Between 1983 and 1989, the Fuel Behavior Studies Branch of the Commissariat à l’Energie Atomique-Grenoble performed eight tests in the HEVA (helium and vapor) program. This program, which is a part of the general French Institute for Nuclear Protection and Safety program concerning severe accident studies, is devoted to the measurement of fission product (FP) release rates under severe accident conditions. Each test was performed with a small section (three pellets) of a standard pressurized water reactor fuel rod in its original cladding, heated in a high frequency furnace, at temperatures up to 2300 K, in a steam and hydrogen environment. The volatile FP release rates were measured by gamma spectrometry. Posttest examinations supplied further information about the behavior of the FP, mainly concerning the aerosol sizing and the chemical speciation of the deposits. The results were compared with those obtained by other laboratories and with the calculated values. The measured release rates are generally lower than those calculated using the CORSOR model. A large influence of the environment is evidenced. The aerosol mean aerodynamic diameter is ∼0.3 µm. The HEVA program is extended by the VERCORS program mainly devoted to low volatile FP release rates and kinetics.