ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Paul A. Lessing, Ronald J. Heaps
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 207-234
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A35031
Articles are hosted by Taylor and Francis Online.
A fuel design being developed for the high-temperature gas-cooled reactor consists of microspheres (particles) of a very small kernel of dense, sintered, enriched 235UCO encapsulated by several layers of pyrolytic carbon and a layer of silicon carbide (SiC). The coated fuel particles are often called TRISO® particles. The SiC is derived via thermal decomposition of methyltrichlorosilane. This strong, dense layer is very important to the integrity of the particle and the retention of fission products. A fundamental understanding of failure mechanisms of unirradiated fuel particles is elucidated by measuring their failure rates when exposed to mechanical stresses. This was accomplished by compression testing of whole particles in two modes: (a) point loading and (b) dimple loading. Finite element stress modeling showed that point loading primarily exposed a small portion of the inner surface of the SiC layer to a maximum tensile stress. Stress analysis for the dimple loading showed that a significant area (inner and outer surface) of the SiC layer and a large volume of the SiC layer were stressed to near-maximum tensile levels. Various batches of archived particles were tested. Weibull methodology was used for analyses of failure statistics for groups of 500 particles. A scanning electron microscope was used for fractography, which identified critical flaws that were the likely fracture origins. The following is concluded from the strength tests. First, the dimple test yielded much lower strengths and different Weibull distribution curves than those resulting from the point-load test. This was attributed to a higher probability of finding flaws due to exposing more and different portions of the SiC layers to high stresses. Therefore, Weibull failure probabilities from the dimple test should give a more accurate prediction of in-service failures than point-load tests. The dimple test gave consistent and reproducible results. Second, fractography indicated that strengths were controlled by flaws, which were identified and categorized. Third, gold-colored spots were linked to large lenticular flaws oriented circumferentially in the SiC layer. These flaws were associated with diffuse iron impurities and silicon and carbon soot. The spots did not greatly affect the medium and high portions of the strength distribution because of their orientation to the tensile stresses. However, there was evidence that large gold spots were associated with a low-strength dog leg at low failure probabilities, and testing a minimum number of 1000 particle/batch is recommended to increase the confidence in fitting this portion of the probability plot. Fourth, compacting did not greatly affect the overall strength distribution of performance test fuel particles. Finally, burn-back and hydrofluoric acid etching procedures appear to accentuate the deleterious effect of some flaws.