ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mohamed S. El-Genk, Dmitry V. Paramonov
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 171-180
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35028
Articles are hosted by Taylor and Francis Online.
A detailed model of the electromagnetic pump of the TOPAZ-II space nuclear reactor power system is developed and compared with experimental data. The magnetic field strength in the pump depends not only on the current supplied by the pump thermionic fuel elements in the reactor core but also on the temperature of the coolant, the magnetic coil, and the pump structure. All electric and thermal properties of the coolant, wall material of the pump ducts, and electric leads are taken to be temperature dependent. The model predictions are in good agreement with experimental data.