ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Arif Nesimi Kiliç
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 413-420
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A35023
Articles are hosted by Taylor and Francis Online.
A simple approximation for predicting the concrete erosion rate and depth is derived based on the heat balance integral method for conduction with the time-dependent boundary conditions. The problem is considered a four-region model including separate, moving heat sinks at the boundaries due to endothermic decomposition reactions. Polynomial temperature profiles are assumed, and the results are compared with previous experimental data and other analytical solutions. Since the technique provides an approximate temperature distribution on the average, it does not give the real temperature evaluation but provides a simple prediction of the erosion rates and the depth of defaulted concrete in terms of the parameters that are important during the physical phenomena. Because of its simplicity and reliability, the model might be useful for the larger molten core/concrete interaction codes and aerosol generation models.