ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Ethwart Pollmann, Joachim Schulze, Dieter Kreuter
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 350-360
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35017
Articles are hosted by Taylor and Francis Online.
In a boiling water reactor, nuclear-thermal-hydraulic instabilities can occur if extreme operating conditions prevail. In various nuclear reactors, stability measurements have been carried out during which the location and the shape of the stability threshold was measured at a certain exposure point during the cycle. Earlier sensitivity studies have already shown that fuel assembly parameters have only a small influence on stability compared with plant parameters. The influence of plant parameters has been verified by measurements that were carried out in the German boiling water reactor Würgassen every 4 to 6 weeks during cycle 14. The results of the measurements showed for the single-loop operation point (least stable point in the core map) a strong variation of the stability threshold power during the cycle. From the beginning of cycle to the middle of cycle, the stability threshold power decreases by ∼16% (relative). After the minimum was reached, the stability threshold power increased again. Smaller variations of the stability threshold power in the core map at natural circulation indicate that not only the stability threshold varies during the cycle, but also the shape of the stability threshold is changed. Analyses with the code system STAIF have shown that the stability behavior during the cycle can clearly be correlated with the variation of the axial and radial power density profile due to control rod maneuvering and fuel burnup. Furthermore, it could be shown that for the estimation of the neutronic feedback not only the density coefficient must be taken into account but also the void variation caused by a power perturbation.