ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jayan K. George, Jagdeep B. Doshi
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 338-349
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35016
Articles are hosted by Taylor and Francis Online.
The pressure disturbance propagation through a weakly compressible medium, bound by rigid structure as well as material interfaces, has an important bearing on the safety analysis of liquid-metal-cooled fast breeder reactors. The analyses have been carried out using numerical algorithms based on Eulerian, Lagrangian, or mixed formulations. Even though the results obtained from these schemes compared well with the benchmark experimental results, certain drawbacks, such as less accurate treatment of material interfaces in the Eulerian schemes and mesh distortion in the La-grangian schemes, and so forth, remain. These drawbacks may be overcome by using a method of characteristics in two dimensions known as the near-characteristic method to solve the problem. The region of interest is discretized into Eulerian grids, and the flow parameters are obtained from the compatibility equations corresponding to the near characteristics generated from the grid points. The material interfaces are tracked explicitly, using the near-characteristic scheme. The scheme is used to analyze a typical core disruptive accident problem, and the results are compared with experimental results as well as those ob. tained using two other numerical schemes. Good agreement is observed among the results; indeed, the one-dimensional problem of exploding wire phenomena and the two-dimensional problem of core disruptive accident analysis validate the effectiveness of the scheme. The future extension of the present scheme will include fluid structure interaction and complex internal structures.