ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Mark T. Leonard
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 320-337
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35015
Articles are hosted by Taylor and Francis Online.
Several probabilistic risk assessments (PRAs) have identified containment loads accompanying reactor vessel failure as a major contributor to the probability of early containment failure during severe accidents. Two significant contributors to these loads are phenomena referred to as “steam spike” and “direct containment heating.” To date, direct application of experimental and analytical studies of these phenomena to boiling water reactors (BWRs) are constrained by two limitations: (a) they are based on applications of large, complex containment response analysis computer codes, for which values of many major input parameters are highly uncertain, or (b) they only address pressurized water reactor containment designs. Relatively simple, parametric models are developed which allow a PRA analyst to evaluate the range of conditions under which steam spike or direct containment heating may be important contributors to containment loads for postulated severe accidents in BWRs. The models have been applied to a representative BWR/4 Mark I containment design to illustrate calculated results.