ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Steven E. Aumeier, John C. Lee, Derek M. Cribley, William R. Martin
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 299-319
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35014
Articles are hosted by Taylor and Francis Online.
We present a new time-based cross-section parameterization scheme that allows for a more accurate global depletion analysis than current methodologies without requiring major modifications to existing codes. The new cross-section parameterization scheme makes use of few-group macroscopic cross sections calculated as a function of time at several different power levels. These cross sections are block ordered by time rather than exposure to allow for the explicit representation of instantaneous control, i.e., soluble boron concentration, and thus accurate isotopic history, within the base cross-section library. The scheme is applied to a global depletion analysis of the Slightly Enriched Spectral-Shift Reactor, an advanced converter reactor based on a pressurized water reactor design, using the CPM-2 assembly-level collision probability code and the UM2DB two-dimensional diffusion code. The depletion calculation establishes the feasibility and potential advantages of the proposed cross-section parameterization methodology and shows that through a judicious choice of spectral shift control rod withdrawal strategies, it is possible to substantially increase fuel resource utilization via the spectral shift effect while maintaining acceptable power peaking factors.