ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Gary R. Smolen, Raymond C. Lloyd, Tadakuni Matsumoto
Nuclear Technology | Volume 107 | Number 3 | September 1994 | Pages 340-355
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT94-A35012
Articles are hosted by Taylor and Francis Online.
Critical experiments were performed at the Pacific Northwest Laboratory’s Critical Mass Laboratory in 1987 and 1988 with a heterogeneous array of mixed-oxide (MOX) fuel pins immersed in mixed plutoniumuranium nitrate solutions. The 996 fuel pins, on a 1.40-cm-square pitch, were configured in a cylindrical array. The solution heavy metal concentrations ranged from 4 to 468 g/ℓ and had a Pu/Pu+U ratio of 0.2. Critical experiments were also performed with gadolinium added to the fissile solution. These experiments were designed to simulate conditions in a MOX fuel dissolver, where fuel lumps are moderated by aqueous solutions containing fissile nuclides, with and without a soluble neutron poison. For the experimental conditions examined, it was determined that the critical size of the system increased as the heavy metal concentration increased. The criticality data were used to validate two versions of the SCALE computer code system and the 27-energy-group cross-section library, derived from the Evaluated Nuclear Data File B Version IV. The calculational results indicate that SCALE-2 has some difficulty in modeling these systems. Modifications in SCALE-4 have led to more accurate keff results.