ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Frank H. Huang, Dolores E. Mitchell, John M. Conner
Nuclear Technology | Volume 107 | Number 3 | September 1994 | Pages 254-271
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35006
Articles are hosted by Taylor and Francis Online.
More than 5 300 000 ℓ (1400 000 gal) of phosphate/sulfate waste (PSW) grout were produced and placed in vault 101 at the Hanford Site. This waste was generated during decontamination operations and maintenance of the fuel storage basin at the N Reactor. The low-level radioactive liquid wastes were mixed with a blend of portland cement, fly ash, and clays. Through cementing and pozzolanic reactions with water, the grout was solidified to immobilize contaminants and retain low permeability to groundwater. Testing conducted before the campaign is described. The usefulness of each quality verification technique is discussed, focusing mainly on data from the core samples. These data provide the best information on PSW grout since core samples from all regions and depths in the vault were tested. The nondestructive testing data are also useful as they provide property data from broad regions of the vault. The mean compressive strength of the PSW grout cores is 4.17 MPa (605 lbƒ/in.2), much higher than the criterion value of 0.35 MPa (50 lbƒ/in.2). Results also show that the leachability indices for 137Cs, 60Co, sodium, and SO4 for PSW grout cores exceed the leachability criterion [American Nuclear Society (ANS) 16.1 leach indices ≥ 7] by at least one index point. This means that the ability of the grout to resist leaching of waste species is at least ten times greater than the limiting criterion. The facility is nearly ready to begin solidifying higher activity mixed waste; however, the program is being reevaluated to determine whether this increased scope of work is appropriate.