ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Doonyapong Wongsawaeng, Donald R. Olander
Nuclear Technology | Volume 146 | Number 3 | June 2004 | Pages 211-220
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3500
Articles are hosted by Taylor and Francis Online.
In light water reactors, a helium-filled gap between the fuel and the cladding accommodates fuel swelling and cladding creepdown. However, the low thermal conductivity of helium results in a large T over the gap before closure occurs. To remedy this situation, Wright et al. proposed the use of a liquid metal (LM) bond in the fuel-cladding gap. The LM (33 wt% each of lead, tin, and bismuth) was chosen for its low melting point (~120°C), its lack of chemical reactivity with UO2 and water, and its high thermal conductivity (~100 times that of He). The thermal resistance of the LM-bonded gap is nil.Prior to closure of a helium-bonded gap, the centerline fuel temperature can be hundreds of degrees hotter than that with an LM-bonded gap at the same linear heat rating. Since the diffusion of fission gas atoms depends strongly upon temperature, it is expected that with the high thermal conductivity pellet-cladding gap, the incubation time to fission gas release should be considerably delayed. A modified Booth Sphere model, which takes into account re-solution, is adopted. The amount of fission gas atoms collected at the grain boundary is calculated using realistic time-temperature histories taken from a recent U.S. Nuclear Regulatory Commission review. The saturation value of gas at the grain boundary proposed by Dowling to fission gas release is adopted. The results show that although the temperature in the LM-bonded case is substantially lower than the He-filled case when the gap is open, the temperatures in the two cases equalize when the gap vanishes. Correspondingly, the two cases exhibit a comparable amount of fission gas at the grain boundary. Calculated differences between the times to saturation with LM and He in the gap are as high as ~1 yr and as low as 1 to 2 days.