ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Doonyapong Wongsawaeng, Donald R. Olander
Nuclear Technology | Volume 146 | Number 3 | June 2004 | Pages 211-220
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3500
Articles are hosted by Taylor and Francis Online.
In light water reactors, a helium-filled gap between the fuel and the cladding accommodates fuel swelling and cladding creepdown. However, the low thermal conductivity of helium results in a large T over the gap before closure occurs. To remedy this situation, Wright et al. proposed the use of a liquid metal (LM) bond in the fuel-cladding gap. The LM (33 wt% each of lead, tin, and bismuth) was chosen for its low melting point (~120°C), its lack of chemical reactivity with UO2 and water, and its high thermal conductivity (~100 times that of He). The thermal resistance of the LM-bonded gap is nil.Prior to closure of a helium-bonded gap, the centerline fuel temperature can be hundreds of degrees hotter than that with an LM-bonded gap at the same linear heat rating. Since the diffusion of fission gas atoms depends strongly upon temperature, it is expected that with the high thermal conductivity pellet-cladding gap, the incubation time to fission gas release should be considerably delayed. A modified Booth Sphere model, which takes into account re-solution, is adopted. The amount of fission gas atoms collected at the grain boundary is calculated using realistic time-temperature histories taken from a recent U.S. Nuclear Regulatory Commission review. The saturation value of gas at the grain boundary proposed by Dowling to fission gas release is adopted. The results show that although the temperature in the LM-bonded case is substantially lower than the He-filled case when the gap is open, the temperatures in the two cases equalize when the gap vanishes. Correspondingly, the two cases exhibit a comparable amount of fission gas at the grain boundary. Calculated differences between the times to saturation with LM and He in the gap are as high as ~1 yr and as low as 1 to 2 days.