ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Doonyapong Wongsawaeng, Donald R. Olander
Nuclear Technology | Volume 146 | Number 3 | June 2004 | Pages 211-220
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3500
Articles are hosted by Taylor and Francis Online.
In light water reactors, a helium-filled gap between the fuel and the cladding accommodates fuel swelling and cladding creepdown. However, the low thermal conductivity of helium results in a large T over the gap before closure occurs. To remedy this situation, Wright et al. proposed the use of a liquid metal (LM) bond in the fuel-cladding gap. The LM (33 wt% each of lead, tin, and bismuth) was chosen for its low melting point (~120°C), its lack of chemical reactivity with UO2 and water, and its high thermal conductivity (~100 times that of He). The thermal resistance of the LM-bonded gap is nil.Prior to closure of a helium-bonded gap, the centerline fuel temperature can be hundreds of degrees hotter than that with an LM-bonded gap at the same linear heat rating. Since the diffusion of fission gas atoms depends strongly upon temperature, it is expected that with the high thermal conductivity pellet-cladding gap, the incubation time to fission gas release should be considerably delayed. A modified Booth Sphere model, which takes into account re-solution, is adopted. The amount of fission gas atoms collected at the grain boundary is calculated using realistic time-temperature histories taken from a recent U.S. Nuclear Regulatory Commission review. The saturation value of gas at the grain boundary proposed by Dowling to fission gas release is adopted. The results show that although the temperature in the LM-bonded case is substantially lower than the He-filled case when the gap is open, the temperatures in the two cases equalize when the gap vanishes. Correspondingly, the two cases exhibit a comparable amount of fission gas at the grain boundary. Calculated differences between the times to saturation with LM and He in the gap are as high as ~1 yr and as low as 1 to 2 days.