ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hiroshi Akie, Tadasumi Muromura, Hideki Takano, Shojiro Matsuura
Nuclear Technology | Volume 107 | Number 2 | August 1994 | Pages 182-192
Technical Paper | Fission Reactor | doi.org/10.13182/NT107-182
Articles are hosted by Taylor and Francis Online.
For the burning of plutonium derived from nuclear warheads, once-through type oxide fuels have been studied by considering their proliferation resistance and environmental safety as well as their technological backgrounds of fuel fabrication and reactors. From phase relations of ceramic materials and their chemical properties, it seems that a two-phase mixture of a fluorite-type phase and alumina has favorable characteristics as a once-through-type fuel of plutonium burning. It also seems that the fluorite-type phases such as thoria and fully stabilized zirconia are acceptable as host phases of plutonium because of high solid solubility of the actinide elements and fission products, irradiation stability, and chemical stability. The spent fuels finally obtained will become mineral-like waste forms, which could be buried under deep geological formations without further processing. From reactor burnup calculations with the use of the fuels, light water reactors (LWRs) with the larger volume ratio of moderator to fuel than 1.4, such as conventional LWRs, are considered to be suitable for the once-through plutonium burning. Furthermore, such LWRs can transmute nearly 99% of 239Pu and 85% of initial loaded weapons-grade plutonium. The quality of plutonium becomes completely poor in the spent fuels.