ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hiroshi Akie, Tadasumi Muromura, Hideki Takano, Shojiro Matsuura
Nuclear Technology | Volume 107 | Number 2 | August 1994 | Pages 182-192
Technical Paper | Fission Reactor | doi.org/10.13182/NT107-182
Articles are hosted by Taylor and Francis Online.
For the burning of plutonium derived from nuclear warheads, once-through type oxide fuels have been studied by considering their proliferation resistance and environmental safety as well as their technological backgrounds of fuel fabrication and reactors. From phase relations of ceramic materials and their chemical properties, it seems that a two-phase mixture of a fluorite-type phase and alumina has favorable characteristics as a once-through-type fuel of plutonium burning. It also seems that the fluorite-type phases such as thoria and fully stabilized zirconia are acceptable as host phases of plutonium because of high solid solubility of the actinide elements and fission products, irradiation stability, and chemical stability. The spent fuels finally obtained will become mineral-like waste forms, which could be buried under deep geological formations without further processing. From reactor burnup calculations with the use of the fuels, light water reactors (LWRs) with the larger volume ratio of moderator to fuel than 1.4, such as conventional LWRs, are considered to be suitable for the once-through plutonium burning. Furthermore, such LWRs can transmute nearly 99% of 239Pu and 85% of initial loaded weapons-grade plutonium. The quality of plutonium becomes completely poor in the spent fuels.