ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Sümer Şahin, Elliot B. Kennel
Nuclear Technology | Volume 107 | Number 2 | August 1994 | Pages 155-181
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A34985
Articles are hosted by Taylor and Francis Online.
A thermo-hydrodynamic-neutronic analysis is performed for a fast, uranium carbide (UC) fueled spacecraft nuclear in-core thermionic reactor. The thermo-hydrodynamic analysis shows that a hybrid thermionic spacecraft nuclear reactor can be designed for both electricity generation and nuclear thermal propulsion purposes. This reactor would deliver a thermal thrust ∼5000 N by a specific impulse of 670 s at a hydrogen exit temperature ∼1900K. During the nuclear thermal thrust phase, the electricity generation will drop, depending on the entry temperature of the hydrogen propellant. Fresh hydrogen can be preheated through nozzle cooling up to 1000 K or more before entering the reactor. The hydrogen pressure and velocity at reactor entry are selected p = 30 atm and ν = 200 m/s, respectively. The pressure drop along the reactor core height (= 35 cm) is calculated Δp = 8.59 atm. The neutronic analysis has been conducted in S8-P3 approximation with the help of one- and two-dimensional neutron transport codes ANISN and DORT, respectively. The calculations have shown that a UC fueled electricity generating single mode thermionic nuclear reactor can be designed to be extremely compact because of the high atomic density of the nuclear fuel (by 95 % sintering density), namely, with a core radius of 8.7 cm and core height of 25 cm, leading to power levels as low as 5 kW(electric) by an electrical output on an emitter surface of 1.243 W/cm2. A reactor control with boronated reflector drums at the outer periphery of the radial reflector of 16-cm thickness would make possible reactivity changes of Δkeff > 10%—amply sufficient for a fast reactor—without a significant distortion of the fission power profile during all phases of the space mission. The hybrid thermionic spacecraft nuclear reactor mode contains cooling channels in the nuclear fuel for the hydrogen propellant. This increases the critical reactor size because of the lower uranium atomic density in this design concept. Calculations have lead to a reactor with a core radius of 22 cm and core height of 35 cm leading to power levels ∼50 kW(electric) under the aforementioned thermionic conversion conditions.