ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mansoor Siddique, Michael W. Golay, Mujid S. Kazimi
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 202-215
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34976
Articles are hosted by Taylor and Francis Online.
An analytical study was conducted to characterize the local condensation heat transfer coefficient of a vapor in the presence of a noncondensable gas, where the gas mixture is flowing downward inside a vertical tube. The two-phase heat transfer was analyzed using an annular flow pattern with a liquid film at the tube wall and a turbulent gas/vapor core. The liquid phase heat transfer was modeled as heat conduction across a falling film. The gas/vapor core was modeled using the analogy between heat and mass transfer. Emphasis was placed on including the effects of developing flow, condensate film roughness, and property variation in the gas phase. The predictions of the model were compared to the experimentally obtained data and reasonably good agreement was found. The results obtained show that for the same mass fraction of noncondensable gas, compared with air, hydrogen and helium have a more inhibiting effect on the heat transfer in that order, but for the same molar ratio, (a) air was found to be more inhibiting, and (b) the heat transfer characteristics of hydrogen/steam and helium/steam mixtures are nearly identical. The results also show that the effects of developing flow are negligible when the inlet flow is at high turbulent Reynolds numbers (Re > 10000). Also, the results show that the film roughness effects are negligible for gas mixtures with low Schmidt numbers (Sc <1.0).