ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Maurizio Bottoni, Robert W. Lyczkowski
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 186-201
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34975
Articles are hosted by Taylor and Francis Online.
The theoretical and computational bases of the BACCHUS-3D/TP computer program are reviewed. The computer program has been developed in the frame of the liquid-metal fast breeder reactor safety project at the Kernforschungszentrum Karlsruhe and is used for thermal-hydraulic analyses of nuclear fuel bundles under normal and accident conditions. The present program combines two models and solution procedures previously used separately, namely, an improved slip model and a separated-phases model. The first model uses mixture equations and accounts for slip between the phases, whereas the latter uses separate continuity and momentum equations. At the present stage of development, both assume thermodynamic equilibrium. Techniques used to affect smooth transitions between the two models are described, including treatment of frictional pressure drop and solution of the Poisson pressure and momentum equations. A detailed derivation of the computation of mass transfer between the phases is given because it is a central and novel feature of the model. A summary of validations performed to date, together with the quantities measured and compared with computations is given in tabular form.