ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Maurizio Bottoni, Robert W. Lyczkowski
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 186-201
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34975
Articles are hosted by Taylor and Francis Online.
The theoretical and computational bases of the BACCHUS-3D/TP computer program are reviewed. The computer program has been developed in the frame of the liquid-metal fast breeder reactor safety project at the Kernforschungszentrum Karlsruhe and is used for thermal-hydraulic analyses of nuclear fuel bundles under normal and accident conditions. The present program combines two models and solution procedures previously used separately, namely, an improved slip model and a separated-phases model. The first model uses mixture equations and accounts for slip between the phases, whereas the latter uses separate continuity and momentum equations. At the present stage of development, both assume thermodynamic equilibrium. Techniques used to affect smooth transitions between the two models are described, including treatment of frictional pressure drop and solution of the Poisson pressure and momentum equations. A detailed derivation of the computation of mass transfer between the phases is given because it is a central and novel feature of the model. A summary of validations performed to date, together with the quantities measured and compared with computations is given in tabular form.