ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Luis E. Herranz, Jesús Polo
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 168-176
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34973
Articles are hosted by Taylor and Francis Online.
The significance of iodine for source term quantification has been studied by investigating its chemical behavior under the prototypical conditions of a hypothetical severe accident within the containment. As a result, some computer codes were developed and their validation is currently under way. The loss-of-fluid test (LOFT) program was one of the most relevant research projects in the area of nuclear safety. Its last experiment, LP-FP-2, simulated a V-sequence. A great deal of information was recorded on the fission product release, transport, and deposition. A theoretical approach to the chemical behavior of iodine in the blowdown suppression tank (BST) of the LOFT facility was attempted with the IODE and IMPAIR-2/M codes. The comparison of the predictions with the existing experimental data led to the conclusion that the BST system behaved as a low-volatility system, with most of the iodine in the form of the soluble nonvolatile species iodide. Only a partial conversion to volatile molecular iodine was observed due to the presence of radiation. However, the intensity of the γ field was so weak that this transformation was not quantitatively meaningful.