ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
F. Eric Haskin, Min Huang, M. Kent Sasser, Desmond W. Stack
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 155-167
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34972
Articles are hosted by Taylor and Francis Online.
The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures.