ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Ho Seok, Hee Cheon No, Sung Jae Cho, Sang Doug Park, Hwang Young Jun, Yong Kwan Lee
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 384-396
Technical Paper | Reactor Operation | doi.org/10.13182/NT94-A34968
Articles are hosted by Taylor and Francis Online.
A workstation-based real-time simulator for two-loop pressurized water reactor plants is developed for classroom training in support of a full-scale simulator, on-site transient analysis, and engineering studies. The present simulator consists of three functional modules: plant module, graphic module, and man-machine interaction module. The plant module includes models for the core kinetics, reactor coolant system, steam generator, main steam line, balance of plant, and control and protection system. Each of the models is optimized to obtain the capability of real-time simulation. For simulating the thermal-hydraulic behavior of the reactor coolant system in the plant module, a fully-implicit safety analysis-2/workstation (FISA-2 /WS) is developed, which adopts implicit algorithms for their inherent stability and efficiency in solving the stiff set of equations that resulted from component models. It allows the use of a larger time step than the Courant limit without any numerical instability, and it also guarantees reasonable accuracy. And the level tracking logic and the peak cladding temperature calculation model on the basis of the simple analytical model are used to track the two-phase water level in the core and to predict the cladding temperature in the uncovered region of the core under accidents, respectively. The graphic module is designed to provide the user with more information at a glance by dynamically displaying schematic diagrams of the systems, symbols indicating the operating status of each component, trend curves, and the main control room. Especially, the CONTROL ROOM menu is designed to enable the user to perform his specific actions through the schematic diagrams of the main control panels in a way similar to which operators do them in the main control room for the KO-RI Nuclear Power Plant Unit 2. In each schematic diagram of five sections, the indicators and alarms display the various operating parameters, alarm signals, and trip signals, and the user can control the various components by operating the corresponding switches in each section through the mouse. Also, the user can initiate his actions through various system diagrams. As tools for the man-machine interface, the man-machine interaction model uses a color cathode ray tube monitor, a standard keyboard, and the mouse. The interactive communication module receives parameters from the user via the keyboard and mouse, and transfers them to the plant module so as to enable the user to perform his specific actions. This module provides the user with various initiating events (malfunctions and manual controls) through SYSTEM, CONTROL ROOM, and ACCIDENTS menus, and thus a wide range of nuclear steam supply system transients can be easily simulated. This module also enables the user to select one of the menu-driven graphic displays. The FISA-2/WS is verified through comparisons with analytical solutions, separated tests and integral tests, and predictions by RETRAN-2 and RELAP5/MOD3. Through the various tests of FISA-2/WS, it is convincing that FISA-2/WS can simulate most transients of the KO-RI Unit 2 with reasonable accuracy in real time.