ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ho Seok, Hee Cheon No, Sung Jae Cho, Sang Doug Park, Hwang Young Jun, Yong Kwan Lee
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 384-396
Technical Paper | Reactor Operation | doi.org/10.13182/NT94-A34968
Articles are hosted by Taylor and Francis Online.
A workstation-based real-time simulator for two-loop pressurized water reactor plants is developed for classroom training in support of a full-scale simulator, on-site transient analysis, and engineering studies. The present simulator consists of three functional modules: plant module, graphic module, and man-machine interaction module. The plant module includes models for the core kinetics, reactor coolant system, steam generator, main steam line, balance of plant, and control and protection system. Each of the models is optimized to obtain the capability of real-time simulation. For simulating the thermal-hydraulic behavior of the reactor coolant system in the plant module, a fully-implicit safety analysis-2/workstation (FISA-2 /WS) is developed, which adopts implicit algorithms for their inherent stability and efficiency in solving the stiff set of equations that resulted from component models. It allows the use of a larger time step than the Courant limit without any numerical instability, and it also guarantees reasonable accuracy. And the level tracking logic and the peak cladding temperature calculation model on the basis of the simple analytical model are used to track the two-phase water level in the core and to predict the cladding temperature in the uncovered region of the core under accidents, respectively. The graphic module is designed to provide the user with more information at a glance by dynamically displaying schematic diagrams of the systems, symbols indicating the operating status of each component, trend curves, and the main control room. Especially, the CONTROL ROOM menu is designed to enable the user to perform his specific actions through the schematic diagrams of the main control panels in a way similar to which operators do them in the main control room for the KO-RI Nuclear Power Plant Unit 2. In each schematic diagram of five sections, the indicators and alarms display the various operating parameters, alarm signals, and trip signals, and the user can control the various components by operating the corresponding switches in each section through the mouse. Also, the user can initiate his actions through various system diagrams. As tools for the man-machine interface, the man-machine interaction model uses a color cathode ray tube monitor, a standard keyboard, and the mouse. The interactive communication module receives parameters from the user via the keyboard and mouse, and transfers them to the plant module so as to enable the user to perform his specific actions. This module provides the user with various initiating events (malfunctions and manual controls) through SYSTEM, CONTROL ROOM, and ACCIDENTS menus, and thus a wide range of nuclear steam supply system transients can be easily simulated. This module also enables the user to select one of the menu-driven graphic displays. The FISA-2/WS is verified through comparisons with analytical solutions, separated tests and integral tests, and predictions by RETRAN-2 and RELAP5/MOD3. Through the various tests of FISA-2/WS, it is convincing that FISA-2/WS can simulate most transients of the KO-RI Unit 2 with reasonable accuracy in real time.