ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Dong H. Nguyen
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 360-372
Technical Paper | Radiation Protection | doi.org/10.13182/NT94-A34966
Articles are hosted by Taylor and Francis Online.
Tritium gas, normally in sealed containers, will be present in the U.S. Department of Energy’s (DOE’s) facilities conducting fusion energy research. A probability of tritium release, however small, exists in these facilities. Once released, tritium can back-diffuse against ventilation flow to contaminate other areas of the facility. Tritium can also be released to the environment by exhaust blowers. The problem of back-diffusion of tritium released in a typical DOE facility was examined as a function of flow rates of the ventilation system. The source term (release to the environment) in the emergency ventilation flow was also calculated. The consequences to personnel in the release room and in an adjacent corridor due to back-diffusion were determined. It was shown that for credible release scenarios, the consequences in the adjacent corridor from tritium back-diffusion were negligible. Higher doses in the release room can be avoided by well-planned emergency evacuation procedures. The source term was calculated, but the on- and off-site consequences were not determined.