An analytical evaluation is made of the pressurized water reactor (PWR) in-core performance of recycled light water reactor fuel that has been Atomics International reduction oxidation (AIROX) reprocessed and reenriched with fissile materials. The neutronics performance is shown to lie within the neutronics performance of existing high-performance and high-burnup fuels. Three AIROX-recycled fuels are compared with a high-burnup virgin fuel and an equivalent mixed-oxide (MOX) fuel. The AIROX-recycled fuel neutronics performance lies consistently between the virgin and the MOX fuel for both the pin power peaking and the reactivity response characteristics in PWRs. Among the attractive features of AIROX-recycled fuel is that it can optimize fissile and fertile fuel use, minimize final fuel disposal impact on the environment, and provide energy in the process of denaturing weapons-grade fissile materials. The fuel material performance may be anticipated from high-burnup virgin fuel and from MOX fuel performance. Recommendations for lead rod testing and for optimization of the AIROX-processing and resintering techniques are made.