ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Donghan Yu, William E. Kastenberg, David Okrent
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 315-325
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34961
Articles are hosted by Taylor and Francis Online.
A new approach is presented for evaluating the uncertainties inherent in severe accident management strategies. At first, this analysis considers accident management as a decision problem (i.e., applying a strategy compared with do nothing) and uses an influence diagram. To evaluate imprecise node probabilities in the influence diagram, the analysis introduces the concept of a fuzzy probability. When fuzzy logic is applied, fuzzy probabilities are easily propagated to obtain results. In addition, the results obtained provide not only information similar to the classical approach, which uses point-estimate values, but also additional information regarding the impact of using imprecise input data. As an illustrative example, the proposed methodology is applied to the evaluation of the drywell flooding strategy for a long-term station blackout sequence at the Peach Bottom nuclear power plant. The results show that the drywell flooding strategy is beneficial for preventing reactor vessel breach. It is also effective for reducing the probability of containment failure for both liner melt-through and late overpressurization. Even though uncertainty exists in the results, flooding is preferred to do nothing when evaluated in terms of two risk measures: early and late fatalities.