ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Kune Y. Suh
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 274-291
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34958
Articles are hosted by Taylor and Francis Online.
A fast-running computational model has been developed that deals with the nuclear steam supply system heat sink as a two-dimensional slice of steel with its inner and outer surfaces subjected to different thermal and material boundary conditions imposed by such surrounding media as core material, steel layer, water, and gas. This model is generally applicable to two- or one-dimensional heat sinks in the process of heatup and cooldown including liquefaction and resolidification. The numerical model and its solution technique were validated against a set of well-defined initial and boundary value problems. The computer model was applied to analyzing the temperature response of the lower head in a pressurized water reactor large-break loss of coolant accident (LOCA) with ex-vessel cooling. It was of importance to properly account for radiative heat transfer between the two exposed surfaces of the heat sink and the debris bed in the lower plenum, incorporating the physically based view factors, and to allow the heat sink to melt and relocate to the lower plenum. The model was also applied to analyzing the thermal behavior of the lower head in a boiling water reactor large-break LOCA without ex-vessel cooling. It was indicated that the vessel lower head could undergo a noticeable ablation due to the decay power generated from the debris bed in the absence of external cooling. The computer model was demonstrated to produce consistent results for the applications of practical interest in the severe accident arena.