ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Thomas D. Radcliff, William S. Johnson, J. Roger Parsons, Douglas E. Ekeroth
Nuclear Technology | Volume 106 | Number 1 | April 1994 | Pages 100-109
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34952
Articles are hosted by Taylor and Francis Online.
Formation of vortices in the lower plenum of existing nuclear power reactors has been hypothesized to cause observed localized coolant starvation, which results in a loss of thermal margin. A 1:9 scale model was built to study vortex formation and suppression in the Westinghouse AP600 advanced reactor design. Geometric similarity was maintained in the regions upstream of the reactor core. Air was used as the working fluid, and a wide range of model velocities were tested. Flow fields in the plenum were visualized with smoke injection and a tuft grid. Twin counterrotating vortices were observed. It is thought that these vortices were induced by viscous shear. The vortices were tested for sensitivity to overall reactor flow, imbalances in the individual coolant loop flows, and position of alignment keyways. Suppression of these vortices was achieved with a passive device placed in the lower plenum. The effect of this device at different axial elevations was studied.