ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Freddie J. Davis, Jr., Yassin A. Hassan
Nuclear Technology | Volume 106 | Number 1 | April 1994 | Pages 83-99
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34951
Articles are hosted by Taylor and Francis Online.
A major concern in the nuclear power industry is failure of the steam generator tubes. Failure of the tubes necessitates the plugging of the failed tubes with the result that nuclear plants are forced to operate at lower, or derated, power levels after expensive repairs. Turbulence-induced vibration is a primary cause of premature and accelerated fretting and wear of the steam generator tubes. An alternative unsteady analysis method for incompressible fluid flow problems is demonstrated. The approach employs large eddy simulation (LES) in conjunction with the finite element method (FEM). A segregated solution technique, solving for each field variable at all nodes, diminishes storage requirements by eliminating the need to solve the globally assembled finite element matrix. A direct benefit is that finer nodalizations can be employed. Equal-order quadrilateral elements are used to facilitate the segregated solution algorithm. The solution scheme is accurate to higher order to mitigate the effects of numerical diffusion in the advection terms. The Smagorinsky-type closure model for the sub-grid scale turbulence is used. The model is easily implemented into this algorithm. This combination of FEM and LES is unique. The time-dependent terms are explicitly treated. The time history of a steam generator tube bundle experiment is studied. The results show the applicability of FEM/ LES and determine the prospects for further development of this methodology.