ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Randall D. Manteufel, Neil E. Todreas
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 421-440
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34941
Articles are hosted by Taylor and Francis Online.
An effective thermal conductivity (keff) and an edge thermal conductance (hedge) model are developed for the interior and edge regions of a spent-fuel assembly residing in an enclosure. The model includes conductive and radiative modes of heat transfer. Predictions using the proposed keff/hedge model are compared with five sets of experimental data for validation. The model is compared with predictions generated by the engine maintenance, assembly, and disassembly (E-MAD) and Wooton-Epstein correlations, which represent the state of the art in this field. The model is applied to a typical pressurized water reactor and a typical boiling water reactor spent fuel assembly, and a set of both nonlinear and linear formulations of the model are derived. The proposed model is based on rigorous models of the governing heat transfer mechanisms and can be applied to a large range of assembly and enclosure types, enclosure temperatures, and assembly decay heat values. The proposed model is more accurate than comparable lumped correlations and is more amenable for simple, repetitive design applications than other detailed numerical models.