ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Curt M. Betts, Mark R. Galvin, Janet R. Green,† V. Melvin Guymon, Stephen M. Slater,‡, Andrew C. Klein
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 395-410
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34939
Articles are hosted by Taylor and Francis Online.
Currently, no comprehensive mechanistic model for the two-phase flow through a swirl vane steam separator is available. Therefore, an attempt has been made to develop an analytical model, using fundamental fluid mechanics, which is capable of predicting separator performance over a wide range of conditions. The developed model subdivides a typical boiling water reactor swirl vane steam separator into four distinct regions: the standpipe region, the swirl vane region, the transition region, and the free vortex region. In each region, the vapor and liquid components are treated separately and the behavior of individual droplets is determined from the drag force induced by the vapor continuum. The analytical model is used to first determine the vapor velocities throughout the separator. The drag force on the droplets is then determined, and the droplets are tracked through the separator in order to determine the exit position of each droplet. Separator performance can then be determined from this final position in terms of the fraction of droplets removed from the flow stream. In order to assess the validity of this model, the computer code SEPARATOR was developed. Among other capabilities, the code is capable of determining separator performance in terms of carryover, carryunder, and exit quality. However, due to the simplicity of the single-phase fluid treatment of the vapor continuum and the lack of data related to the average droplet diameter for flows of this nature, the results are not of significant quantitative value. The investigation performed does, however, suggest that the developed methodology, upon refinement of the single-phase fluids treatment, will yield quantitatively accurate results for nearly all separator operating conditions of interest.