ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Allen L. Pitner, Brent C. Gneiting, Ronald B. Baker, Samuel L. Hecht
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 355-365
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A34936
Articles are hosted by Taylor and Francis Online.
Four prototype irradiation tests were conducted in the Fast Flux Test Facility to investigate the performance of a 2-yr mixed-oxide fuel system using titaniumstabilized stainless steel cladding and duct material for application in a commercial-scale liquid-metal reactor plant. Three of the tests were irradiated to the point of cladding breach to establish the lifetime capability of this fuel design. Details of the fuel element design, irradiation conditions and exposures, and postirradiation measurements are presented. Comparisons between measured and calculated behavior showed basically good agreement. A conservative failure analysis of the 676-fuel-pin data set from the four test assemblies indicated a 99.9% reliability for a peak burnup capability of 90 MW .d/kg metal.