ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hirokazu Ohta, Takeshi Yokoo, Masatoshi Nakagawa, Shinichiro Matsuyama
Nuclear Technology | Volume 146 | Number 2 | May 2004 | Pages 131-142
Technical Paper | Fission Reactors | doi.org/10.13182/NT04-A3493
Articles are hosted by Taylor and Francis Online.
An advanced analysis code, ARKAS_cellule, has been developed to determine the core distortion and the mechanical behavior of fast reactors. In this code, each hexagonal subassembly duct is represented by a folded thin plate structure divided into a user-specified number of shell elements so that the interduct contact forms and the cross-sectional distortion effect of each duct are properly taken into account. In this paper, the numerical model of the ARKAS_cellule code is introduced, and the analytical results for two validation problems are presented. From a single duct compaction analysis, the first validation problem, it is clarified that the new analytical model is applicable to simulating the change of duct compaction stiffness that depends on the loading conditions such as the loading pad forms and the number of contact faces. The second validation analysis has been conducted by comparison with the experimental values obtained by the National Nuclear Corporation Limited in the United Kingdom using the core restraint uniplanar experimental rig (CRUPER), an ex-reactor rig in which a cluster of 91 short ducts is compressed by 30 movable peripheral rams toward the center of the cluster in seven stages. The analysis clarified that the predictions obtained using ARKAS_cellule agree well with the measured ram loads and interwrapper gap widths during the compaction sequence. One may conclude that ARKAS_cellule is valid for quantitative analysis of the core mechanical behavior and will be particularly useful for the evaluation of transient deformation of core assemblies during accidents in which the distortion of loading pads have important effects on obtaining favorable reactivity feedback.