A simplified model of two-phase slug flow is constructed. Model equations containing 11 parameters can describe the characteristics of slug flow completely. These equations can generally be solved by an iterative method within 15 iterations, if the relative error tolerance is chosen to be 0.1%. The model is applicable to two-phase systems with various diameters with a correction in the liquid slug void fraction. The procedures for correcting the liquid slug void fraction and for solving the model equations are also presented. Some experimental time-varying signals of slug flow are selected to be analyzed. Model calculations are compared with both previously published and new experimental data. The comparisons show that the errors in the calculated results are generally within ±10%.