ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Min Lee, Lih-Yih Liao
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 216-230
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34924
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) bundle data from the Heat Transfer Research Facility of Columbia University are used to check the validity of the CHF approaches used in thermal-hydraulic system analysis codes for light water reactors. The CHF approaches assessed include the Biasi et al. correlation of TRAC, the Groeneveld et al. CHF table lookup approach of RELAP5/MOD3, the CHF table lookup approach of CATHARE, and the CHF approach of RETRAN. Depending on system pressure, RETRAN uses the B&W2, Barnett, and modified Barnett correlations and a linear interpolation scheme to predict CHF. Results show that among these CHF approaches, the Groeneveld et al. approach has the best prediction accuracy and the smallest uncertainty in the estimation of the HTRF bundle data. On the average, the Groeneveld et al. approach overpredicts the uniform axial heat flux distribution by 3.6% and the nonuniform axial heat flux distribution by 0.9%. The performance of the RETRAN approach is comparable with that of the Groeneveld et al. approach for uniform axial heat flux. In general, the accuracy and the uncertainty of all the approaches, except that of CATHARE, are worse under a nonuniform axial heat distribution than under a uniform axial heat distribution. All the CHF approaches assessed have a tendency to overpredict the HTRF bundle data at low pressure, low measured CHF, and high CHF quality. The performance of the Groeneveld et al. approach is improved through a CHF table update and modification of the bundle correction factor using the HTRF bundle data.