ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Rudi Van De Graaf, T. H. J. J. Van Der Hagen, Robert F. Mudde
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 190-200
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34922
Articles are hosted by Taylor and Francis Online.
In order to study the thermohydraulic behavior of a natural-circulation-cooled boiling water reactor (BWR) fuel assembly, such as void drift, flow pattern distribution, and stability, a scaled loop geometry is designed. For modeling the steam/water flow in a BWR fuel assembly, scaling criteria are derived using the onedimensional drift-flux model. Thermal equilibrium and subcooled boiling conditions are treated separately, resulting in one overall set of criteria. Scaling on all flow regimes that can be present in a normal fuel assembly leads to fixing both the assembly mass flux and the geometric dimensions. When Freon-12 is used as a modeling fluid, model assembly dimensions must be 0.46 of the prototype. Total power consumption must be reduced by a factor 50. To sustain cooling by natural circulation, a modeled chimney and downcomer are included.