ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Yutaka Takeuchi, Yukio Takigawa, Hitoshi Uematsu, Shigeo Ebata, James C. Shaug, Bharat S. Shiralkar
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 162-183
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34920
Articles are hosted by Taylor and Francis Online.
Space- and time-dependent phenomena, mostly related to neutron flux oscillations, have been observed in several boiling water reactor plants, A time-dependent three-dimensional transient analysis code is indispensable for simulating such phenomena. In a joint effort between the General Electric Company and the Toshiba Corporation, a three-dimensional neutron kinetics model has been implemented into the best-estimate thermal-hydraulics code, TRACG. A neutronics model implementation and the applicability of the modified TRACG code for analyzing space-dependent phenomena are discussed. To verify the code, startup tests with selected rod insertions, where control rods are locally inserted, are simulated. Both corewide, spatially in-phase neutron flux oscillations and regional, spatially out-of-phase oscillations are modeled. The results show that the modified TRACG code has sufficient capability to simulate space-dependent transients and is also a useful tool for investigating the fundamental mechanisms behind such transients.