ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. Abrefah, H. F. G. De Abreu, F. Tehranian, Y. S. Kim, D. R. Olander
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 137-144
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34918
Articles are hosted by Taylor and Francis Online.
The kinetics of the reaction of molecular iodine with preoxidized Type 304 stainless steel was studied by mass spectrometric and gravimetric techniques. The temperature range was 438 to 803 K, and the iodine partial pressures in the 1-atm total pressure water vapor-hydrogen gas ranged from 1.33 to 133 Pa. Examination of the reacted surface by electronic spectroscopies showed localized attack in the form of highly fractured crystalline deposits that contained significant iodine concentrations. The mass spectrometric results revealed no HI in the gas despite favorable thermodynamics for formation of this species. The gravimetric results showed an initial rapid increase in weight followed by a slow, long-term weight change that did not appear to approach saturation. The saturation iodine concentration on the surface due to the initial deposition process was greatest at 573 K. The kinetics of the initial uptake was analyzed by a first-order kinetics model. The characteristic times of attainment of saturation were on the order of 1 h and showed a very small activation energy.