ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
J. Abrefah, H. F. G. De Abreu, F. Tehranian, Y. S. Kim, D. R. Olander
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 137-144
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34918
Articles are hosted by Taylor and Francis Online.
The kinetics of the reaction of molecular iodine with preoxidized Type 304 stainless steel was studied by mass spectrometric and gravimetric techniques. The temperature range was 438 to 803 K, and the iodine partial pressures in the 1-atm total pressure water vapor-hydrogen gas ranged from 1.33 to 133 Pa. Examination of the reacted surface by electronic spectroscopies showed localized attack in the form of highly fractured crystalline deposits that contained significant iodine concentrations. The mass spectrometric results revealed no HI in the gas despite favorable thermodynamics for formation of this species. The gravimetric results showed an initial rapid increase in weight followed by a slow, long-term weight change that did not appear to approach saturation. The saturation iodine concentration on the surface due to the initial deposition process was greatest at 573 K. The kinetics of the initial uptake was analyzed by a first-order kinetics model. The characteristic times of attainment of saturation were on the order of 1 h and showed a very small activation energy.