ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sumeet Chhibber, George E. Apostolakis, David Okrent
Nuclear Technology | Volume 105 | Number 1 | January 1994 | Pages 87-103
Technical Paper | Special on Nuclear Criticality Safety / Nuclear Reactor Safety | doi.org/10.13182/NT94-A34913
Articles are hosted by Taylor and Francis Online.
The use of expert judgments in probabilistic risk assessments has become common. Simple aggregation methods have often been used with the result that expert biases and interexpert dependence are often neglected. Sophisticated theoretical models for the use of expert opinions have been proposed that offer ways of incorporating expert biases and dependence, but they have not found wide acceptance because of the difficulty and rigor of these methods. Practical guidance on the use of the versatile Bayesian expert judgment aggregation model is provided. In particular, the case study of pressure increment due to vessel breach in the Sequoyah nuclear power plant is chosen to illustrate how phenomenological uncertainty can be addressed by using the Bayesian aggregation model. The results indicate that the Bayesian aggregation model is a suitable candidate model for aggregating expert judgments, especially if there is phenomenological uncertainty. Phenomenological uncertainty can be represented through the dependence parameter of the Bayesian model. This is because the sharing of assumptions by the experts tends to introduce dependence between the experts. The extent of commonality in the experts’ beliefs can be characterized by assessing their interdependence. The results indicate that uncertainty is possibly underestimated by ignoring dependence. Two Bayesian approaches are used. The first approach uses the experts’ opinions as evidence to update the decision maker’s state of knowledge. The second approach, in recognition of the fact that the experts are highly dependent on a common information source, assumes that the common information source is the actual expert and the participants are assessing its biases and credibility. The results lend validity to the use of weighted averaging schemes because the Bayesian aggregation method encompasses simple arithmetic and geometric averaging techniques.