ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
B. Basoglu, R. W. Brewer, C. F. Haught, D. F. Hollenbach, A. D. Wilkinson, H. L. Dodds, P. F. Pasqua
Nuclear Technology | Volume 105 | Number 1 | January 1994 | Pages 14-30
Technical Paper | Special on Nuclear Criticality Safety / Nuclear Criticality Safety | doi.org/10.13182/NT94-A34907
Articles are hosted by Taylor and Francis Online.
This paper describes the development of a computer model for predicting the excursion characteristics of a postulated, hypothetical, criticality accident involving a homogeneous mixture of low-enriched UO2 powder and water contained in a cylindrical blender. The model uses point neutronics coupled with simple lumped-parameter thermal-hydraulic feedback. The temperature of the system is calculated using a simple time-dependent energy balance where two extreme conditions for the thermal behavior of the system are considered, which bound the real life situation. Using these extremes, three different models are developed. To evaluate the models, we compared our results with the results of the POWDER code, which was developed by the Commissariat à l’Energie Atomique/United Kingdom Atomic Energy Authority (CEA/UKAEA) for damp powder systems. The agreement in these comparisons is satisfactory. Results of the excursion studies in this work show that approximately 1019 fissions occur as a result of accidental water ingress into powder blenders containing 5000 kg of low-enriched (5%) UO2 powder.