ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Tetsuaki Takeda, Jin Iwatsuki
Nuclear Technology | Volume 146 | Number 1 | April 2004 | Pages 83-95
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT04-A3490
Articles are hosted by Taylor and Francis Online.
Permeation of hydrogen isotopes through a high-temperature alloy used for heat exchanger and catalyst pipes is an important problem in the hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR). The objective of this study is to investigate the effect of the existence of hydrogen in an outside pipe on the amount of permeated deuterium through the pipe. It was found that the amount of permeated deuterium decreases by increasing the partial pressure of hydrogen in the outside pipe when the partial pressure of deuterium in the pipe is lower than 100 Pa and that of hydrogen in the outside pipe is larger than 10 kPa. The amount of permeated deuterium on counter permeation was predicted quantitatively by using an effectiveness factor for diffusivity of deuterium in metals and by taking into account the equilibrium state for hydrogen, deuterium, and HD molecules on the metal surface. From the results obtained in this study, it is supposed that the amount of tritium transferred from the primary circuit of the HTTR to the hydrogen production system will be reduced by the existence of high-pressure hydrogen in the catalyst pipe of the steam reformer.