ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
John J. Nitao, Thomas A. Buscheck, Dwayne A. Chesnut
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 385-402
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34899
Articles are hosted by Taylor and Francis Online.
Some of the possible water transport mechanisms through fractured rock in the unsaturated zone at Yucca Mountain are studied to analyze the performance of a high-level nuclear repository at the potential Yucca Mountain site. Analysis shows that water can flow in fractures as opposed to flow through the rock matrix if the incoming flux and the fracture aperture size exceed critical values. The rock matrix does not have to be nearly saturated for fracture flow to occur because the fractures and matrix can be in capillary disequilibrium during transient episodic infiltration events. As an example, the type of flow, fracture or matrix, is calculated for vertical fractures in the hydrogeologic units at Yucca Mountain. The results affect such issues as natural and total system performance, site characterization activities, and site suitability determination. Also, the important differences between an unsaturated and a saturated site are pointed out. The traditional concepts of near-field, far-field, and disturbed zone become blurred when talking about the unsaturated zone. The heat of decay may have beneficial aspects for an unsaturated site. Current regulations containing such concepts such as “groundwater travel time” are not consistent with some of the physical processes inherent in an unsaturated system.